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Linear algebraic techniques based on minimization of thermodynamic functional and/or
other constraints are illustrated for mass balance of chemical reactions that do not exhibit sto-
ichiometrically unique solutions in the linear algebraic vector space. The techniques demon-
strate elegant casting of chemical equations in terms of generalized linear Diophantine matri-
ces and generalized elimination and variational schemes.
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1. Introduction

Mass balance of chemical reactions or commonly known as balancing of chemi-
cal reactions is a century-old problem that has received considerable attention both in
chemical and mathematical literature [1–10]. Herndon [1] has written a nice and com-
prehensive review article on the subject recently. The mass balance of chemical reac-
tions provides an excellent demonstrative and pedagogical example of interplay between
chemical principles and mathematics. The mathematics involved can vary in complexity
from simple trial and error techniques to sophisticated Diophantine equations [5] and
generalized matrix inverses [6]. Although the first algebraic formulation dates back to
1878 by Bottomley [3], under the title of “indeterminate coefficients” technique, the
topic has received considerable attention both in mathematical and chemical commu-
nity continuously for several decades, the most recent one that I am aware of is due to
Herndon [1] who has written a comprehensive review and a previous article [2] on the
subject.

While it may seem that expressing mass balance in linear algebraic terms may
complicate a simple inspection method, intuitive technique or other methods such as
half-reactions, there are situations where linear algebra based methods may be more at-
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tractive, especially to explain and resolve what may be seemingly paradoxical or infinite
solutions to chemical reactions.

It is usually presumed that most of the common textbook chemical reactions are
readily and easily balanced, and with the availability of mathematica and other software,
this seems straightforward. A set of chemical reactions has been perplexing to chemists
and has received particular attention in the literature [4,7]. Herndon [1] characterized
these reactions asn(CM) > 1 chemical reactions, wheren(CM) is the nullity of the co-
efficient matrix (CM) of the chemical reaction under consideration. These reactions are
perplexing in that they exhibit infinite linearly independent solutions all of which satisfy
the chemical balance, and yet they are not all chemically feasible solutions for a given
set of experimental conditions. A unique solution is obtained by imposing a chemical
constraint, namely, that reactants have to react only in certain proportions. This has led
to the idea of “splitting Diophantine equations” by explicitly imposing a stoichiometric
constraint. Sophisticated mathematical techniques such as generalized matrix inverses
[6] have been considered for chemical balance reactions which exhibit unique balanced
equations, that isn(CM) = 1. It seems, however, that a precise linear algebraic method
based on variational principles may be appropriate to achieve the splitting ofn(CM) > 1
chemical reactions. The thermodynamic minimization has been suggested in the chemi-
cal context [11] of treating analogous reactions, but a precise linear algebraic treatment
that also combines the thermodynamics variational principles can be quite elegant and
educational as we demonstrate here. It should also be emphasized that thermodynamic
optimization [11,16] is applicable only when the chemical species are in chemical equi-
librium. In other circumstances, other constraints have to be stipulated on the basis
of experimental conditions, or kinetics consideration or consideration of mechanisms,
catalysis, pH and so on.

It should also be noted that mass balance of chemical reactions constitutes linear
equations in integers called Diophantine equations in the mathematical context [12–15]
and the topic as such has received considerable attention in mathematics [12–14] and
computer literature [15]. For example, the celebrated Hilbert’s tenth problem seeks a
technique for solving a general Diophantine equation, especially non-linear equations. It
seems at present higher order Diophantine equations have not been solved. Diophantine
equations find important applications in the encryption method [15], computer security
through cryptosystems, which send a known transformation of a message as a secure
cryptogram, which is back transformed by the receiver by a reciprocal transformation to
decipher the message.

An objective of this article is to demonstrate a hybrid linear algebraic variational
method for chemical reactions, which do not exhibit unique mass balance, that is, the
nullity of the chemical coefficient matrix is greater than 1. The technique seems to be
elegant in expressing and separating chemical reactions on the basis of thermodynamic
optimization or other constraints derived on the basis of experimental conditions such as
fixed initial stoichiometric proportions, kinetics or mechanistic considerations etc.
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2. Basic linear algebraic techniques

It is well known [1–10] that all chemical reactions can be expressed in terms of a
coefficient matrix CM, wherein the columns represent the reactants and products, and
the rows represent the distinct atoms in the chemical reaction. To illustrate, the reaction

NaNO2+ FeSO4+ H2SO4 = NaHSO4+ Fe2(SO4)3+ NO+ H2O

can be expressed by the CM matrix, which we represent by anm×nmatrixA, where the
m rows correspond to the distinct elements, namely, Na, N, O, Fe, S and H, respectively,
and the columns are the chemical species:

A =




1 0 0 −1 0 0 0
1 0 0 0 0 −1 0
2 4 4 −4 −12 −1 −1
0 1 0 0 −2 0 0
0 1 1 −1 −3 0 0
0 0 2 −1 0 0 −2



. (1)

Then the linear equations in integers expressing the mass balance become

AX = 0, (2)

whereX is a column vector of lengthn, which represents the solution of the chemical
mass balance. The famous rank-nullity theorem of matrices determines when the solu-
tion of the matrix is unique and when it is not. That is, for the reactions where the nullity
of the matrix expressed as

r = n− rank(A)

becomes more than or equal to 2, there are infinite ways of balancing the chemical
reactions and each of which would represent a stoichiometrically different solution. For
the common chemical reactionsr becomes 1, which means any multiple of a set of
balanced coefficients is also a solution. Since only the proportion of chemical masses
matters, all such solutions are chemically equivalent. However, for reactions for which
r > 1, there are infinite solutions with different chemical proportions. These reactions
would be the topic of linear variational techniques.

It is interesting thatr is always more than or equal to 2 ifn−m is more than or equal
to 2; converse is not true since two rows of the matrix can become linearly dependent.
These reactions are interesting from the standpoint that mathematically there may be
infinite solutions but chemically one such solution or a linear multiple of such a solution
can only be correct in a given chemical proportion or experimental condition, although
other solutions may be appropriate in different experimental conditions.
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It is well know that the solution for equation (2) can be readily obtained by the
famous Gauss–Jordan or Gauss elimination method [17] which leads to a unique set of
solutions forr = 1 given by

Xn=
n−1∏
i=1

aii , aii �= 0 ∀i, (3)

Xn−1=−an−1,n

n−2∏
i=1

aii , aii �= 0 ∀i, (4)

Xn−2=−(an−2,n−1Xn−1 + an−2,nXn)

an−2,n−2
, (5)

Xi =−
∑n

j=i+1 aijXj

aii
, (6)

whereaij ’s are the matrix elements of the Gauss-eliminated matrix obtained from start-
ing with the CM matrix. Note that the above procedure assures integral solutions for all
Xi ’s. However, the mass balance cannot be achieved unless allXi ’s have the same sign.
If some of them are positive and others are negative, the equation cannot be balanced.
If one of the diagonal elements become zero in the final Gauss-eliminated matrix, the
equation cannot be balanced. However, if a diagonal element becomes zero during the
elimination procedure usually a permutation of the rows could circumvent the problem,
but the final eliminated matrix cannot contain zero diagonal elements in order for the
reaction to be balanced.

The cases for whichr � 2 are quite interesting in that the standard Gauss elimi-
nation procedure needs to be generalized and thermodynamic or other constraints have
to be imposed. There are many reactions of this kind, but the one that drew the author’s
attention [10] to this problem during his high school years is

2KClO3+ 4HCl= 2KCl+ 2ClO2+ Cl2+ 2H2O (5)

8KClO3+ 24HCl= 8KCl+ 6ClO2+ 9Cl2+ 12H2O (6)

12KClO3+ 32HCl= 21KCl+ 10ClO2+ 11Cl2+ 16H2O (7)

One can make linear combination of any two of the above reactions and produce infinite
solutions. Ther vale for the above reaction is(6 − 4) = 2, and thus, there are two
linearly independent solutions according to the rank-nullity theorem.

The reactions such as the one shown above have been looked at in the literature
using other techniques such as fixing the chemical proportion of the reactants com-
bined with some experimental condition but it seems that the combination of variational
method with matrix algebra may provide an elegant, general and interesting approach
to the problem. That is, the Gauss elimination procedure is generalized as follows and
then combined with the variational principle to minimize the thermodynamic variational
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function or other schemes, which may be the Gibbs free energy if the system is un-
der constant temperature and pressure constraints and equilibrium. Suppose we denote
the variations of then chemical species by dn1, dn2, . . . and then a thermodynamic
functionalL can be invoked as an extremum variable if the system is under equilib-
rium. TheL function is a function of dn1, dn2, . . . and thermodynamic variablesV1,
V2, V3, . . . , Vt . It is natural thatL would be an extensive functional as the system is
one of variable masses andL would have partial molar properties. As an example, for a
system of two variables as pressure and temperature,L becomes the Gibbs free energy,
and if the variables are volume and temperature,L becomes the Helmholtz function, but
the formalism considered here is quite general to encompass both famous cases and any
other optimization functional. The requirement of optimization is that dL = 0, and we
have the variation expression:

dL =
t∑
i=1

(
dL

dVi

)
dVi +

n∑
j=1

(
dL

dnj

)
dnj , (8)

and if we denote dL/dnj by Uj , thenL becomes an extremum when dL = 0. The
constraint of constant variablesV1, V2, V3, . . . , Vt results in the equations:

dL =
n∑
j=1

(
dL

dnj

)
dnj = 0. (9)

For independent variations dnk this will result in (dL/dnk) = 0 for k = 1,2,3, . . . ,
(n−m), which resolves the chemical balance equation inton−m linearly independent
equations. To illustrate, the reaction

H2O2+O3 = H2O+O2 (10)

which has anr vale of 2 and, thus, infinite stoichiometrically independent solutions
yields the following equations for the extremal functionalL:

−3U1+ U2+ 3U3 = 0, −2U2+ 3U4 = 0. (11)

We can generalize the variational scheme with anm× n Diophantine matrix. The
CM matrix A for such reactions can be partitioned into anm × m square matrix and a
residualm× (n−m) matrix. Them×m matrix is Gauss-eliminated as follows:


a11 a12 . . . a1m

0 a21 . . . a2m
...

...
. . .

...

0 0 . . . amm

∣∣∣∣∣∣∣∣∣

a1,m+1 . . . a1n

a2m+1 . . . a2n
...

. . .
...

am,m+1 . . . amn






dn1

dn2
...

dnn


 = 0. (12)
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This results in the following solutions:

dnm = − 1

amm

n∑
j=m+1

amj dnj ,

dnm−1 = − 1

am−1,m−1

(
n∑

j=m+1

am−1,j dnj

)
− am−1,m

am−1,m−1
dnm, (13)

· · ·
Thus, it can be seen that

ammUm

(
m∏
k=1

akk

)
dnm = Um

(
m∏
k=1

akk

)
n∑

j=m+1

amj dnj . (14)

The condition that dL should be 0 is equivalent to the matrix equation

(U1 U2 . . . Un )B




dnm+1

dnm+2
...

dnn


 = 0, (15)

whereB is a matrix of ordern× (n−m) satisfying the following relations to the Gauss-
eliminated reaction matrixA:

bml = −am,m+l
∏m
k=1 akk

amm
,

bil = −ai,m+l
aii

m∏
k=1

akk − 1

aii

n∑
j=i+1

aij bjl , i < m,

bil =
m∏
k=1

akk, i = m+ l, i > m,

bil = 0, i �= m+ l, i > m,
l = 1,2,3, . . . , n−m.

(16)

The above expressions represent the solutions obtained by seeking a generalized
Gaussian elimination followed by recursive back substitution combined with the thermo-
dynamic variational conditions. The latter conditions lead to the fact that the columns of
the matrixB contain the(n−m) stoichiometrically independent solutions for the original
chemical equation, which has infinite mathematical solutions. It should be emphasized
that the optimization of a thermodynamic functionalL is appropriate only when the sys-
tem is in equilibrium. For other dynamical situations other constraints have to be sought
such as initial stoichiometric proportions, catalysts, and other experimental conditions.
Such conditions can then be mathematically transformed and the unique solution for
those conditions can be sought.
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3. Conclusion

While the century-old problem of chemical balance can be solved by many stan-
dard techniques such as half-reaction method, the elegant linear Diophantine matrix for-
mulation becomes especially useful in cases where the reaction matrices lead to infi-
nite stoichiometrically independent solutions. In addition to explaining the paradox of
infinite solutions in precise mathematical terms, the cases provide models for the gen-
eralization of Gaussian elimination to other linear systems with infinite solutions. The
technique also represents solutions to linear Diophantine equations with infinite solu-
tions or cases with nullity of the associated linear Diophantine matrix is more than one.
For the chemical species the unique set of stoichiometrically independent linear equa-
tions can be obtained by stipulating thermodynamic variational principles if the system
is in equilibrium or other constraints determined on the basis of experimental conditions.
The techniques outlined are valid for applications in other fields also, where such linear
Diophantine equations with infinite solutions arise.
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